Crustal rheology variation along the San Andreas fault controls its secondary
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Faults & earthquakes

Effects of lower crust viscosity contrast Evolution for Real M
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The long-term viscoplastic deformations in the SAF are modelled by the Underworld2, with128*64*32
elements in a calculated volume of 600 km (x) *300 km (y)*150 km (z). The constant velocity 40 mm/year
towards the positive x direction is applied on the back vertical plane ( y = 300 km ) while the velocity in x
direction in the front vertical plane (y = 0 km) is zero. Material are not allowed to move out/in the box, and
free slip is applied for other velocity components. Here shows the Real M model.

1. Conditions for formation of Garlock Fault: a 2. Fault dip direction: controlled by lower crust
strong crust in southern California rheology contrast on both sides of fault plane
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